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Several stable spatiotemporally periodic states in coupled- (logistic) map lattices are analytically ob-
tained. Spatiotemporally periodic windows are found in the parameter region where the single logistic
map is in a fully developed chaotic state. Spatiotemporal intermittency transients and spatiotemporal in-
termittency and their mechanisms are discussed. Chaotic supertransients and their average transient
lengths are investigated. The influence of the system size on the system dynamics is analyzed numerical-
ly in detail. Finally, we try to control chaotic supertransients by pinnings; the astronomically long tran-

sients are impressively shortened after controlling.

PACS number(s): 05.45.+b, 47.20. Ky

I. INTRODUCTION

Turbulence exists extensively in nature, such as in
fluids, optics, chemical reactions, plasma, and biology
systems, etc. It is very important to characterize these
spatiotemporal complexities both theoretically and exper-
imentally. The high dimensionality of the space-time sys-
tems causes many difficulties both in analytical and nu-
merical studies. Coupled-map lattices (CML’s) [1-23]
are the most convenient tools in this investigation. In
this paper, we focus our attention on the model of a one-
dimensional CML.

A CML is a dynamical system with a discrete time,
discrete space, and continuous state. The widely studied
one-dimensional model has the following form:

k
X, (D)=(1—€)f(x,(iN+ I B;f(x,(i—j)), (1)
j=—k
! Jj#0

with

k
> Bj=e, 2)
j=—k
j*0
where n is the discrete time step, i the lattice site label,
and pB; the diffusion constants. The simplest model with
symmetrical couplings is the nearest-neighbor coupled
diffusive model (B_,=B,=€/2) [2-6,19-22]:

X, 11(D)=(1—€)f(x,(i))
+§{f(xn(i—1))+f(x,,(i+1))}. (3)
In this presentation, we restrict ourselves in this case.

Here we assume a periodic boundary condition,
x,(i)=x,(i +L), with L being the system size. The ini-

1063-651X/94/49(2)/1099(10)/$06.00 49

tial conditions are prepared, unless specified otherwise, to
be the random numbers ranging from O to 1 in most of
our calculations. The mapping function f(x) is chosen
to be the logistic map:

f(x)=ax(1-x), @)

which shows periodic doubling at a =3 with the accumu-
lation point at @ =a,=3.569... . This map is either
periodic or chaotic when a >a,, and for a =4, f(x)
maps the interval [0,1] exactly into itself, and the dynam-
ics are in a fully developed chaotic state. In this paper,
we investigate the case of ¢ =4 in most of our discus-
sions.

Many results on CML’s have been published; for in-
stance, Kaneko and co-worker [1-6] have investigated
the statistical properties, pattern selections, supertran-
sient, spatiotemporal intermittency (STI), spatiotemporal
intermittency transient (STIT), etc.; Keeler and Farmer
[10] and Chate and Manneville [11] have studied in detail
the STI, while Bohr and co-workers [7-9] and other au-
thors [12-22] have investigated the correlation length,
Lyapunov exponents, soliton waves, phase transitions,
and so on. In this paper, we first discuss the low-
dimensional stable periodic attractors of Eq. (3) and their
extension to high-dimensional cases (Sec. II). Spatiotem-
porally periodic windows (SPW’s) are shown here in CML
systems. In Sec. III we investigate a class of STIT and
STI in CML’s, and some explanations are given for the
mechanism of this kind of STIT and STI. In Sec. IV, we
will study the supertransients of those stable attractors
discussed in Sec. II. Finally, we try to control the chaotic
supertransients by pinning feedbacks to the lattice sites to
shorten the astronomically long transients of the system
in Sec. V.
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II. SPATIOTEMPORALLY PERIODIC STATES
AND PERIODIC WINDOWS IN CML’S

A. Low-dimensional stable attractors

To investigate the behaviors of high-dimensional sys-
tems, it is sometimes very useful first to look at the low-
dimensional ones, especially for Eq. (3) due to its high
symmetry. First we take L =2, and reduce Eq. (3) to

X, (D)=(1—€)f(x,(1))+ef(x,(2)),

=(1—€)f(x,(2))+ef(x,(1))

An inhomogeneous fixed-point solution (we will denote
temporal period-m states as Tm, spatial period-k states as
Sk; thus this fixed-point solution is denoted as T1S2) can
be analytically worked out as

X, +1(2)
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_ (1—a+2ae)+V(1—a +2ae)

—4(e—ae+2aé?)
2a (2e—1) '

X+

(6)
This state exists when

1
2¢—1 °
The minimum a for this state is a;, =3, which is just the
parameter point of periodic doubling. Linear stability

analysis shows the following maximum Lyapunov ex-
ponent (A):

a>2+

(7

172
1—e

2e—1

(3e—1)?

A=In|—
(2e—1)?

+(2e—1)a(2—a)

(8)

And the stability boundary in €-a space can be easily ob-
tained from Eq. (8):

_1+Vv3/a(a—2)

_3+2a(a—2)+V[3+2a(a—2)]

—4a(a —2)a—1)?

€_ 2 y €4

At €_ the maximum eigenvalue is a negative unit, while
at €, the eigenvalues are a pair of conjugate numbers
with unit modulus; thus period doubling occurs at €_ and
Hopf bifurcation at €.

From (5) and (6) we can easily deduce that there exists
an antiphase T2S2 state. Inserting Eq. (6) into Eq. (5)
after substituting € by 1—e¢ in Egs. (5) and (6), we arrive
at

x,=(1—e€)f(x_)t+ef(xy)
_=(1—e)f(x ) tef(x_

Obviously, it is just an antiphase T2S2 state (x_x,
x_.x_), and the simple transformation indicates that if
there exists a T1S2 state at €, there must be an antiphase
T2S2 state at 1—¢,. For the linear stability analysis, we
need only substitute € by 1—e€ in Eq. (8) to obtain the
maximum Lyapunov exponent of the T2S2 state. The bi-
furcation at (1—e_) is tangent other than period dou-
bling and at (1—e_.) is Hopf.

Furthermore, an antiphase T2S4 state (x _x x_ x_,
X ,x_x_x,) can also be easily deduced from the anti-
phase T2S2 state: Because x,(i +1)=x,(i —1) for the
T2S2 state, then Eq. (3) for the T2S2 state is reduced to

x, (D=0—e)f (x,())+ef(x,(i+1)), (11)

while for the T2S4 state x,(i +1)7x,(i —1), we have in-
stead either x,(i +1)=x,(i) or x,(i —1)—xn(1) Let
x, (i—1)=x,(i ) [the analysis is the same for
x,(i +1)=x,(i)], Eq. (3) can be reduced to

(10)

4a(a —2)

1——— fx, (i)+ f(x (i+1)). (12

xn+1(i)=

Comparing Eq. (11) with Eq. (12), one finds at once that
the difference between the two equations is only the fac-
tor 1. Thus, if there exists a T2S2 state at €, there must
be a T2S4 state at 2¢€,. Generally, if there exists a TmS2
state at €, there must be a TmS4 state at 2¢,, for any time
period m. With some algebra, we can verify that we just
need to substitute € by (1—e€)/2 in Eq. (8) to obtain the
maximum Lyapunov exponent of the T2S4 state. The bi-
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FIG. 1. The stability boundaries for T1S2 (I, L =2), T2S2
(II, L =2), and T2S4 (II1, L =4) states in €-a space.
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FIG. 2. Bifurcations of the system versus diffusion constant €
for L =4 and a=4. (a) Chaos—T4S2—TI1S2—chaos; (b)
Chaos— T4S4— T2S2—T4S2—chaos— T2S4—T4S4—chaos.

furcation behaviors of the T2S4 state are just like those of
the T2S2 state. Therefore, we have obtained three kinds
of periodic states analytically, with the stability boun-
daries being (Fig. 1)
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FIG. 3. A versus € for L =4. The similarity of the three re-
gions is clearly seen.

[e_,e,] for the T1S2 state ,
[1—e,,1—€_] for the T2S2 state , (13)
[2(1—€,),2(1—e_)] for the T2S4 state ,

where €_ and €, are specified in Eq. (9).

Actually, the existence of the T1S2 and T2S2 states has
been reported in Refs. [19], [21], and [22], but the T2S4
state is reported here for the first time because the solu-
tion cannot be obtained so directly. In Fig. 2 we show
the bifurcations of Eq. (3) versus € for @ =4 and L =4.
Besides the T1 and T2 states analytically obtained above,
there are some T4 states bifurcated from the T1 and T2
states. Figure 3 plots the maximum Lyapunov exponents
(A) for a =4 and L =4 by varying €. The similarity of
the three stable regions is clearly seen.

Besides the three analytical solutions obtained in Egs.
(9)-(12), we can also analytically obtain an antiphase
T2S6  state  (x;X;X,X(X3%3,X1X3X3%XX3%,), Wwith
X1,%5,X3 being

_J
4 172
(2—3€)a +e—2+ |[(2—3e)a+e—2]+ (2_36)[;2__:)‘1”]6
X, = 2(2—3€)a ’
. . 2 4 172 (14)
) ll—-? a1 )| 1=5 lat+l| —(2—€a |2+ 5= —ef(x) ]
x2’3_ (2_6)0 .

This state is stable at a =4 for 0.55 <e<1. Numerical
simulations reveal that solution (14) is not the unique
stable T2S6 state in the region of 0.64 < € <0.69, and that
there are several other stable T2S6 states which finally go
back to the solution (14) as € <0.64 and €> 0.69.

By numerical simulations we find many other stable at-

tractors in the region (¢ =4) where the single logistic
map is in fully developed chaos. For instance, there is a
stable S5 state for €=0.36 to 0.58, a stable S7 state for
€=0.56 to 1, etc. In Fig. 4 we show a number of the spa-
tially periodic stable states in the CML at a =4. Three
points are worthwhile remarking about at this stage.
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FIG. 4. The stability boundaries of several spatially periodic
states for a =4. The stable regions of these states are shaded,
while the SPW’s are blackened. For shaded regions we take
L =k for Sk, k =2,4,5,. . ., while for SPW, we mean that for
L =mk, k=2 and 4, m =1,2,3,. . ., the system has a unique at-
tractor for the given parameters (Sec. I B).

First, it is interesting to point out that the previous works
have shown that at a =4 the diffusion region of €>0.2 is
a fully developed turbulence region for the CML’s [4].
However, here we find that in the well-known fully
developed turbulence region and stable attractors are still
very ‘“dense” (Fig. 4). Second, the existence of such
stable periodic attractors strongly depends on the lattice
sizes of the system. Thus, the influence of system sizes on
the spatiotemporal structures is a crucial point in the
study of CML. Third, though we find a great number of
stable periodic structures in the CML system at a fully
developed chaos region (a =4, € >0.2), the systematic bi-
furcation sequences, such as periodic doubling both spa-
tially and temporally, leading to chaos have not been
found, which is not like the case at the accumulating
point [22]. Chaos often bursts abruptly via intermittency
or crises.

B. Spatiotemporally periodic windows in coupled-map lattice

In Sec. II A we discussed the low-dimensional stable
periodic states in the CML’s. The problems of apparent
significance are whether the stable periodic states found
in low-dimensional cases are still stable for larger L and
how the attracting basins depend on the system size if the
periodic states remain stable. The stability of the spatial-
ly periodic states in CML’s has been analytically dis-
cussed in Refs. [21] and [22], which reveal that the stabil-
ity boundary of a spatially periodic state may be changed
by changing the system size L. For example, the lower
boundary of the T2S2 state slightly shifts from
€=0.1392... to €=0.14037... at a =4 as L goes to
infinity [21]. Here we only use numerical simulations to
test the stability of the periodic states mentioned in Sec.
IT A for large L. In a certain parameter region there is a
unique stable state. We call such a parameter region spa-
tiotemporally periodic window (SPW).

In Fig. 5 we show the A’s of the system versus L for
€=0.15, 0.3, and 0.6 at a =4. A comparison of Fig. 5

with the results obtained by Bohr and co-workers [8,9] is
interesting. In Refs. [8] and [9] the authors mainly inves-
tigated the A’s not far from the accumulating point. The
size dependence of the A’s is the following. The A’s are
first equal to that of the single map for small L, and after
certain critical system sizes the A suddenly drops to zero
and is maintained at zero until the second critical size,
after which all the A’s are maintained approximately to a
half of that of the single map (see Fig. 1 in Ref. [8]). Fig-
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FIG. 5. A versus L at a =4.
€=0.6.
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ure 5(a) shows the A’s of the system versus L at €=0.15
and a =4. For L =2,4,6, ..., the A’s are negative with
the same value, which means that the system finds the
same attractor (T2S2), while for odd L’s the A’s are posi-
tive, which is dramatically different from the picture in
Ref. [8). Figure 5(b) shows the case for €=0.3. The first
two A’s are equal to In2, which means that the system is
in the homogeneous chaotic state at L =2. At L =4k
(k=1,2,3,...) the A’s take the same negative value and
thus the system finds the same attractor (T2S4), while at
L4k the A’s are positive. At €=0.6 [Fig. 5(c)], the A’s
versus L are not so regular, due to the coexistence of
many stable attractors. But the essential features are not
changed. For example, at L =6,12,18,24, the A’s are
negative with the same value and thus the system finds
the same stable attractor (T2S6), though the initial condi-
tions are changed. The above three cases have a common
feature in that after the system first finds the stable at-
tractor by increasing L, the A’s of chaotic attractors are
maintained to about }1n2. This well confirms the argu-
ments in Refs. [8] and [9], though our parameters are tak-
en in the fully developed turbulence region.

Figures 6(a)—6(c) show the space-time structures of the
stable attractors for L =60, and €=0.15, 0.3, and 0.6, re-
spectively. However, it is almost impossible to reach the
stable states for such long chains at €=0.3 and 0.6 with
completely random initial conditions due to the extreme-
ly long transients. But if we prepare the initial conditions
as xo(i)=X(i)+o&(i) [X(i) is a solution of the stable
state, o a small constant, and £(i) random numbers rang-
ing from —1 to 1], we can find that the system quickly
approaches the stable attractors for o sufficiently small
for any system sizes that indicate the existence of the
stable attractors. Thus these three attractors are at least
locally stable. We have roughly estimated the maximum
o for the attractors for which there are no chaotic bursts
for any initial preparations of £(i). For the T2S2 state at
€=0.15 and the T2S4 state at €=0.3, we find o,,=0.04
as the system sizes expand to very large values (e.g.,
L =3000). We define here o, as the “basin width” and
oL, as the “basin volume” of a stable attractor for sys-
tem size L. It is interesting to point out that the basin
widths of the T2S2 and T2S4 states have no observable
changes as L increases, while the basin width of the T2S6
state decreases quickly as L increases.

We find in the €-a space that there are some regions
where the stable attractors are unique. For example, at
€=0.15 and a =4, we tried many different initial condi-
tions and different system sizes, the system always arrest-
ed by the T2S2 state for even L but in turbulence for odd
L (Fig.5). By numerical check, we find, for
0.14...<€<0.163... and 0.28...<€<0.34... at
a =4, the stable attractors are uniquely T2S2 and T2S4
states, respectively. These two regions can extend to
smaller a regions, and we call these two parameter re-
gions in e€-a space SPW’s of CML’s. At a =4 and
0.163...<€<0.1938.. ., there coexist many stable at-
tractors of which the existence does not depend on sys-
tem sizes chosen and thus pattern selections are common.
In Fig. 6(d) we show one of the patterns for e=0.18 and
L =60, which is dominated by the T2S2 state, while
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FIG. 6. The time-space structures of the stable states for
L =60 and a =4; the snapshots of the stable states are plotted
in the small frames. (a) €=0.15; (b) €=0.3; (c) €=0.6; (d)
€=0.18.
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several T4 domains appear, and the patterns selected in
this parameter region are very sensitive to the initial con-
ditions chosen.

III. STI AND STIT

Weak turbulence can take the form of STI, i.e., a sus-
tained regime where coherent-regular and disordered-
chaotic domains coexist and evolve in time and space.
Although STI is observed widely in physical systems—
for instance, laboratory examples can be found in
Rayleigh-Bénard convection [24,25]—there are few
theories for it. It is known that there are three types of
temporal intermittency, described by Pomeau and
Manneville [26], Grebogi, Ott, and Yorke [27], and
Cruthfield [28]. Keeler and Farmer have investigated a
class of STI in detail and explained them by both the
Pomeau-Manneville and the Cruthfield theories [10].

In this section we will be involved in the STI and STIT
in our one-dimensional CML model. As we have dis-
cussed before, there are SPW’s in the turbulence region,
where the attractors are unique. For instance, we always
encounter the same stable zigzag pattern (T2S2 state) at
€=0.15 and a =4 of any even system size L, and tur-
bulence for odd L. By numerical simulations we find
STIT for even L and robust STI for odd L. In Fig. 7(a) we
show the STIT for €=0.15 and L =60. After about
14 000 iterations, the STIT disappears and the system is
finally arrested by the stable T2S2 attractor. Figure 7(b)
shows the STI for €=0.15 and L =59, while Fig. 7(c)
shows its spatiotemporal structure in the time interval of
n =10000 to 10050. The STIT and STI shown in the
figures are rather impressive. The time that the sites stay
at the laminar state is surprisingly long and thus the
STIT and STI are very robust. Furthermore, the STIT
and STI can occur in a wide range of parameter regions;
for instance, we can observe STIT and STI in the whole
T2S2 SPW.

It can be clearly seen in the figures that the laminar
states in the STIT and STI are nothing but the stable
T2S2 state, and most of the sites at any given time stay at
the T2S2 state while a small portion of the sites are in
chaotic motion [see Fig. 7(c)]. The STIT and STI
presented in these cases can be briefly explained as fol-
lows:

(i) STIT. For even L, there exists a T2S2 attractor. In
order to rule out chaotic transient bursts, one must
prepare the initial conditions very near the stable state,
i.e., in the basin of attraction. The time needed for all the
sites to get to the stable states is very long if we take com-
pletely random initial conditions. Before all the sites get
to the destination, most of the sites are arrested by the
laminar state, while a small portion is still in chaotic
states. Thus the chaotic sites will act as noise sources
and try to kick the laminar sites out of the basin of at-
traction to turbulence by diffusions. When the noise
strength added to a laminar site is big enough in compar-
ison with the basin width o ,,, this laminar site will burst
into turbulence. This is a typical competition process be-
tween two phases—the laminar phase and the turbulence
phase. The stable attractor tries to arrest all the sites at

the laminar state while the unarrested sites tend to kick
the rested sites to turbulence by diffusions. The competi-
tion maintains a finite time length till all the sites are
arrested by the stable state, therefore we observed STIT.
(ii) STI. In the case of odd L there is a mismatch in
system size for a stable T2S2 attractor. The STI can be
understood as follows. Suppose there is a system with
even system size L-1. After the system is attracted by the
stable attractor, we add an additional site to the system,
and the new site will try to find its stable position. But
due to the mismatch in system size, there is always a site
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FIG. 7. (a) STIT for €=0.15, a =4, and L =60. The time
evolutions of x (1) and x (45) are shown. (b) STI for €=0.15,
a =4, and L =59. The time evolutions of x (1) and x (30) are
shown. (c) The time-space structure for n from 10000 to 10050
of the STI in (b).
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that cannot find its proper position in the T2S2 state and
has to stay at the chaotic motion. This additional site
acts as a permanent noise source and thus stimulates and
maintains the STI in CML. Actually, this noise source
will draw a small number of sites (not only one) away
from the laminar state due to the diffusions. So STI in-
stead of STIT is observed.

Obviously, in order to observe robust STI and STIT,
one requires that the diffusion constant € should be
sufficiently large for creating noise strong enough to kick
the laminar sites out of the attracting basin, on the one
hand, but sufficiently small to keep the laminar sites to
stay at the stable states long enough, on the other hand.
The other request for STI and STIT is that the system
size should be sufficiently large. In fact, for L <L,
(L.=~11 for €=0.15 and @ =4 in our case) no such kinds
of robust STIT and STI can be observed. We believe that
these kinds of STIT and STI exist very commonly in
CML systems or other spatially extended systems.

Although in the T2S4 SPW the stable states have al-
most the same basin volumes as those of the T2S2 SPW,
no such kinds of STI and STIT are observed. The reason
is that chaotic noise diffuses so fast due to the strong cou-
plings that the lattice sites are almost not able to stay at
the laminar state for sufficiently long periods of time. In
Fig. 8, we show the probability distribution for €=0.3,
a=4, and L =61. The data are obtained within 10°
iterations. It is clearly seen that there are two probability
peaks located at x(i)=0.4584... and x(i)=0.8987. ..
which are just the two possible states of the T2S4 state.
Actually when L =4k, the extremely long transient has
the same kind of quasistationary probability distribution.
This probability distribution means that the system visits
the stable states many more times than the other states,
i.e., the system strives to find the stable attractor while
the strong diffusions try to kick it out of the stable state.
Owing to the large diffusions, the STI phenomenon is not
apparent. [Note, if we draw the same probability profile
for Fig. 7(b), the two probability peaks should be much
sharper than that in Fig. 8.]

0.0 0.2 0.4 0.6 0.8 1.0
x(i)

FIG. 8. The probability distribution p versus x (i) and i at
a=4,€=0.3,and L =61. Data are taken within 10° iterations.

IV. TRANSIENT STATISTICS

As having been claimed by Cruthfield and Kaneko
[5,6], the spatially extended systems exhibit chaotic su-
pertransients. Here we calculate the average transient
lengths of the T1S2, T2S2, T2S4, and T2S6 states versus
diffusion constant € or system size L. Figure 9 shows the
average transient lengths versus € for T1S2, T2S2, and
T2S4 states at L =4. We have discussed in Sec. II that
the three states have the same Lyapunov spectra and
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FIG. 9. The average transient lengths versus € for L =4 and
a =4. (a) The T2S2 state; (b) the T2S4 state; (c) the T1S2 state.
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FIG. 10. The average transient lengths versus L at a =4 for
the T282 (O, €=0.15) and T2S4 (+, €=0.3) states.

basin width, so it is not difficult to understand that the
average transient lengths have similar behaviors versus €
in the three regions. Figure 10 shows the average tran-
sient lengths of the T2S2 and T2S4 states, which increase
exponentially with L versus system size L. The average
lengths of these two transients satisfy

T =b exp(cL) . (15)

For €¢=0.15, we have b =114.946, ¢ =0.0926, and for
€=0.3, b =15.6, and ¢ =0.47. Since the basin widths of
these attractors are not sensitive to the system sizes, the
exponential relation in (15) can be easily understood.
(The transient time should be proportional to the basin
volume o%,..)

In contrast to those of the T2S2 and T2S4 states, the
average transient length of the T2S6 state increases with
L in a hyperexponential manner [Fig. 11(a)], which can
be fitted as

T=bexp(cL?), (16)

where b =392.619, ¢ =0.000548, and d =3 for €=0.6
and a =4. This hyperexponential feature may be due to
the change of the basin widths versus system sizes. Fig-
ures 11(b) and 11(c) show the transient processes for
L =12 and 18, respectively. In contrast to the T2S2 and
T2S4 states of which the transition from transient chaos
to stable regular motions is very abrupt, for the T2S6
state there is a long nonchaotic transient after the ter-
mination of the chaotic transient. The maximum width
of the nonchaotic transient can be regarded as propor-
tional to the basin width, which contracts considerably
by increasing the system sizes (see Fig. 11). Then the hy-
perexponential relation in Fig. 11(a) can be intuitively un-
derstood.

V. CONTROLLING TRANSIENT CHAOS

Controlling chaos is of current interest. After the first
paper by Ott, Grebogi, and Yorke [29], a great number of

works have been published [30-36]. But most works
focus on low-dimensional systems. To our knowledge,
there is no work about controlling chaos on the CML
systems reported. Here we report a result of controlling
the extremely long chaotic transient to direct the system
to the stable attractor in a very short time. The method
we have used here is to pin feedbacks to the lattice sites,
which is

LA A A O O O TTTTT T

6000

T
0 2000 ; 4000
L

0.0 |

0.0 7%’#"’ T
600 7000
n

N S S S S S B S S

8000

FIG. 11. (a) The average transient length of the T2S6 state
versus L for €=0.6 and a =4. (b) and (c) The transient evolu-
tions of the T2S6 state for L =12 and L =18, respectively.
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xp+1(D=(1—€)f (x,(1)
+ £ (fx, i = D)Hf e+ D))

+g,8(i—Ik), k=12,...,L/I (17)
where

g, =(1—¢€)P,(i)x,(i)[x,())—X,(i)]
+§{P,,(i —1)x, (i —D[x, (i =1)—X%,(i —1)]

+P,(i +1)x, (i +1)
X[x,(i +1)=%,(i +1)]} . (18)

I is the distance between pinnings, 8(j)=1 for j=0,
5(j)=0 otherwise, and X,(i) is the stable state solution.
The reason we use this nonlinear feedback instead of a
simple linear one is to prevent the overflows in numerical
simulations. Near the stable state the controlling is just
the conventional linear negative feedback control [31,32].

As stated in Sec. IV, the transient process for the T2S4
state in a large size system is extremely long; for instance,
the average transient length calculated from Eq. (15) is
2.76X 10" for L =60, and 4.87% 10% for L =120. For
such astronomically long transients, one would have to
take one’s whole life to wait for the transient to disap-
pear, even if a powerful computer were available. So it is
practically important and extremely useful to shorten the
supertransient of the spatially extended systems. Here we
control the transient for system size L =60 by using Eq.
(17). If we feed back one site for each 12 sites (the pin-
ning density is very low!), the system evolves quickly to
the vicinity of the stable state and shows a time-space
regular motion. In Fig. 12 we plot x,(i) versus i and
x,(30) versus n in the case of controlling; the relaxation
length is less than 4000. We have taken various random

—
()]

o-frerr b byl

1.0

x(i)

o
o

e
o

v rrr v rrrr T T T T T T
60
1

FIG. 12. Time-space structure of the controlled system after
4000 transient iterations, while the small frame plots x,(30)
versus n for n from zero to 10000. We use P, (i)=2 for the sites
whose reference states are located at X,(i/)=0.8987... and
P,(i)=1 for those that X,(i)=0.4584. .. . Pinnings are input at
sites i =1,13,25,37,49. The initial condition is prepared as
completely random numbers.

initial conditions in variable space (0,1), the system al-
ways going to the vicinity of the T2S4 state and realizing
the asymptotic state of the T2S4 state with few defects.
The largest relaxation length we encountered is less than
10*. We have also controlled the transition of a number
of other stable states; our controlling method is found to
be very robust and effective and the shortening of the su-
pertransients is really impressive.
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